impact factor magnetic resonance in medicine

impact factor magnetic resonance in medicine is a critical metric that reflects the influence and scientific importance of research published in the field of magnetic resonance imaging (MRI) as it applies to medical science. Understanding the impact factor within this specialized domain helps clinicians, researchers, and institutions assess the quality and reach of scholarly work related to MRI technology, diagnostic applications, and therapeutic innovations. Magnetic resonance in medicine encompasses a wide range of topics, including imaging techniques, contrast agents, functional imaging, and advanced diagnostic methods. This article explores the concept of impact factor as it pertains to magnetic resonance in medicine, its significance, factors influencing it, and its role in guiding research priorities and clinical practice. Key aspects such as the methodology for calculating impact factors, leading journals in the field, and emerging trends will be examined to provide a comprehensive overview. The discussion will also cover the implications of impact factor metrics for funding, academic reputation, and the advancement of MRI technologies in healthcare. Below is a detailed outline of the main topics covered in this article.

- Understanding Impact Factor in Medical Research
- The Role of Magnetic Resonance in Medicine
- Impact Factor Metrics Specific to Magnetic Resonance Journals
- Factors Influencing Impact Factor in MRI Research
- Leading Journals and Their Impact in Magnetic Resonance Medicine
- Implications of Impact Factor on Research and Clinical Practice

Understanding Impact Factor in Medical Research

The impact factor is a quantitative measure used to evaluate the relative importance of a scientific journal within its field. It is calculated based on the average number of citations received by articles published in a journal during a specific period, typically two years. In medical research, this metric serves as a benchmark to determine the visibility, influence, and credibility of research outputs. The impact factor magnetic resonance in medicine context is particularly significant because it helps identify journals that contribute most to advancements in MRI science and clinical applications.

Calculation and Interpretation of Impact Factor

The impact factor is calculated by dividing the number of citations in a given year to articles published in the previous two years by the total number of citable articles published in those two years. For example, if a journal published 100 articles in 2021 and 2022, and those articles received 500 citations in 2023, the impact factor for 2023 would be 5.0. This figure is interpreted as an average citation rate per article, providing insight into how frequently research within that journal is referenced by peers. However, it is essential to note that impact factor should be considered alongside other metrics and qualitative factors to assess research quality comprehensively.

Limitations of Impact Factor in Medical Fields

While impact factor remains a widely used metric, it has several limitations, especially in specialized fields such as magnetic resonance in medicine. Citation practices vary among disciplines, and high-impact journals may favor certain types of articles, such as reviews over original research. Additionally, impact factor does not reflect the actual quality or clinical relevance of individual studies. Therefore, it is crucial to interpret impact factors within the context of the field's norms and alongside alternative metrics like h-index, Eigenfactor, and article-level metrics.

The Role of Magnetic Resonance in Medicine

Magnetic resonance imaging (MRI) is a non-invasive diagnostic technique that uses strong magnetic fields and radio waves to generate detailed images of the internal structures of the body. It plays a pivotal role in modern medicine by enabling early disease detection, guiding treatment planning, and monitoring therapeutic outcomes. The field of magnetic resonance in medicine continues to evolve rapidly with advances in imaging hardware, software algorithms, and contrast agents, expanding its applications in neurology, oncology, cardiology, and musculoskeletal disorders.

Applications of Magnetic Resonance Imaging

MRI is utilized in a broad spectrum of clinical scenarios due to its excellent soft tissue contrast and ability to produce multiplanar images. Common applications include:

- Brain and spinal cord imaging for neurological disorders
- Detection and staging of cancers
- Cardiac imaging to assess myocardial function and perfusion

- Musculoskeletal imaging for joint and soft tissue evaluation
- Functional MRI (fMRI) to study brain activity and connectivity

Technological Innovations in Magnetic Resonance

Recent advancements have enhanced the capabilities of MRI in medicine. These include the development of higher-field magnets (3T and beyond), diffusion tensor imaging, spectroscopy, and real-time imaging techniques. Such innovations have improved image resolution, reduced scan times, and enabled more precise characterization of pathological conditions, thereby influencing research output and publication trends within the field.

Impact Factor Metrics Specific to Magnetic Resonance Journals

Journals specializing in magnetic resonance in medicine are evaluated on their impact factor to gauge their influence within the scientific community. These journals publish original research, reviews, case studies, and technical notes that contribute to the understanding and advancement of MRI technologies and applications. The impact factor magnetic resonance in medicine is a critical consideration for authors seeking reputable publication venues and for institutions evaluating research productivity.

Top Journals in Magnetic Resonance Medicine

Several journals are recognized for their high impact factors and authoritative content in the field of magnetic resonance in medicine. These include:

- Magnetic Resonance in Medicine Renowned for publishing innovative MRI research and methodological advances.
- Journal of Magnetic Resonance Imaging Focuses on clinical applications and imaging techniques.
- Magnetic Resonance Materials in Physics, Biology and Medicine Emphasizes interdisciplinary research involving MRI physics and biology.
- **European Radiology** Publishes significant MRI studies within the broader radiology discipline.

Trends in Citation and Publication

The citation patterns in magnetic resonance journals reflect ongoing research priorities and technological breakthroughs. Review articles and studies introducing new imaging protocols tend to receive higher citations, thus increasing the impact factor. Additionally, interdisciplinary research that integrates MRI with other diagnostic modalities or computational methods often garners substantial academic attention.

Factors Influencing Impact Factor in MRI Research

Multiple factors affect the impact factor magnetic resonance in medicine, shaping how journals perform in citation metrics. Understanding these factors aids researchers and publishers in strategizing to enhance visibility and influence.

Publication Quality and Article Type

High-quality research with robust methodology and clinical relevance tends to attract more citations. Reviews, meta-analyses, and consensus guidelines typically receive higher citation counts than single-center observational studies. Journals that maintain rigorous peer-review standards and publish cutting-edge content generally achieve superior impact factors.

Research Collaboration and Interdisciplinary Studies

Collaborative research involving multiple institutions and disciplines often yields broader recognition and citations. Studies that integrate MRI with genetics, bioinformatics, or therapeutic interventions expand the audience and citation potential, positively affecting impact factors.

Open Access and Dissemination Strategies

Open access publishing increases the accessibility of articles, leading to higher readership and citation rates. Journals adopting open access models or hybrid systems tend to see enhanced impact factors. Moreover, effective dissemination through conferences, social media, and academic networks contributes to citation growth.

Leading Journals and Their Impact in Magnetic

Resonance Medicine

Identifying leading journals in magnetic resonance in medicine provides insight into the platforms driving scientific progress and clinical innovation. These journals are characterized by consistently high impact factors, rigorous editorial policies, and a reputation for publishing influential research.

Magnetic Resonance in Medicine

As the flagship journal dedicated exclusively to MRI research, Magnetic Resonance in Medicine boasts a strong impact factor reflecting its role in disseminating novel imaging techniques, physics, and clinical applications. It attracts submissions from a global community of researchers and clinicians committed to advancing MRI science.

Journal of Magnetic Resonance Imaging

This journal focuses on the clinical aspects of MRI, including diagnostic accuracy, image interpretation, and patient outcomes. Its substantial impact factor underscores its importance in bridging research with clinical practice.

Other Noteworthy Publications

Journals such as Radiology, European Radiology, and NeuroImage also contribute significantly to magnetic resonance medicine research, often featuring high-impact MRI studies within broader radiological and neuroscience contexts.

Implications of Impact Factor on Research and Clinical Practice

The impact factor magnetic resonance in medicine influences various aspects of the scientific ecosystem, from research funding to clinical adoption of new technologies.

Impact on Research Funding and Academic Advancement

Funding agencies and academic institutions often consider impact factor metrics when evaluating grant applications and faculty performance. Publishing in high-impact MRI journals can enhance researchers' profiles, facilitate collaborations, and attract financial support for further

Guiding Clinical Innovation and Evidence-Based Medicine

Clinicians rely on high-impact research to inform diagnostic and therapeutic decisions. Journals with strong impact factors in magnetic resonance medicine tend to publish evidence that shapes clinical guidelines, improves patient care, and encourages the adoption of emerging MRI technologies.

Ethical and Practical Considerations

While the impact factor is a valuable tool, overemphasis on this metric may inadvertently skew research priorities or encourage publication bias. Balanced evaluation processes that incorporate impact factors alongside qualitative assessments promote ethical and meaningful scientific progress.

- 1. Understanding the calculation and limitations of impact factor metrics
- 2. Appreciating the broad applications and technological advances in magnetic resonance in medicine
- 3. Recognizing the key journals that shape the field and their citation dynamics
- 4. Identifying factors that influence impact factor outcomes in MRI research
- 5. Considering the broader implications of impact factor on research, funding, and clinical practice

Frequently Asked Questions

What is the impact factor of Magnetic Resonance in Medicine journal?

As of 2023, the impact factor of Magnetic Resonance in Medicine is approximately 4.5, reflecting its influence in the field of medical imaging and MRI research.

Why is the impact factor important for Magnetic Resonance in Medicine?

The impact factor indicates the average number of citations to recent articles published in the journal, serving as a measure of the journal's relevance and prestige in the field of magnetic resonance imaging and medical research.

How does Magnetic Resonance in Medicine's impact factor compare to other MRI journals?

Magnetic Resonance in Medicine typically has a higher impact factor compared to many specialized MRI journals, positioning it as one of the leading publications for cutting-edge MRI research and methodology.

What factors influence the impact factor of Magnetic Resonance in Medicine?

Factors include the quality and novelty of published research, citation frequency, editorial standards, and the journal's visibility in the scientific community.

Can the impact factor of Magnetic Resonance in Medicine affect researchers' publication decisions?

Yes, researchers often consider the impact factor when choosing where to submit their work, as publishing in higher impact journals like Magnetic Resonance in Medicine can enhance the visibility and credibility of their research.

Has the impact factor of Magnetic Resonance in Medicine changed recently?

The impact factor of Magnetic Resonance in Medicine has shown a gradual increase over recent years, reflecting growing interest and advancements in MRI technology and applications within the medical field.

Additional Resources

1. Magnetic Resonance Imaging in Medicine: Principles and Applications
This comprehensive book covers the fundamental principles of magnetic
resonance imaging (MRI) and its diverse applications in medicine. It delves
into the physics behind MRI technology, image acquisition techniques, and the
interpretation of results. The text also explores the clinical impact of MRI
in diagnosing various diseases, making it a valuable resource for both
students and practitioners.

2. Impact Factor Analysis of Magnetic Resonance Techniques in Clinical Practice

Focusing on the evaluation of impact factors in MRI research, this book assesses the significance and influence of various magnetic resonance techniques in clinical settings. It provides insights into how different MRI modalities contribute to improved patient outcomes and medical advancements. Case studies and statistical analyses illustrate the growing role of MRI in modern medicine.

- 3. Advanced Magnetic Resonance Imaging: Innovations and Medical Impact
 This title explores cutting-edge advancements in MRI technology, including
 functional MRI, diffusion tensor imaging, and spectroscopy. It highlights how
 these innovations have transformed medical diagnostics and treatment
 planning. The book also discusses future directions and potential impact
 factors influencing research and clinical adoption.
- 4. Quantitative Magnetic Resonance in Medical Diagnostics
 This book emphasizes quantitative approaches in MRI, focusing on measuring tissue properties and disease biomarkers. It explains how quantitative MRI enhances diagnostic accuracy and monitoring of disease progression. The author discusses the impact of these methods on personalized medicine and clinical decision-making.
- 5. Magnetic Resonance Imaging: Clinical Impact and Research Trends
 A detailed overview of MRI's role in clinical diagnostics and ongoing
 research, this book reviews the impact factors that shape the scientific
 literature and practice. It covers various medical fields such as neurology,
 oncology, and cardiology, showcasing MRI's versatility. Readers gain an
 understanding of how impact factors influence the dissemination and
 development of MRI knowledge.
- 6. Functional Magnetic Resonance Imaging and Its Impact on Neuroscience Dedicated to functional MRI (fMRI), this book discusses how fMRI has revolutionized neuroscience research and clinical neurology. It explains the principles of brain mapping, neural activity detection, and cognitive function assessment. The impact of fMRI studies on understanding brain disorders and guiding therapeutic interventions is thoroughly examined.
- 7. Magnetic Resonance Spectroscopy in Medicine: Techniques and Clinical Impact

This book introduces magnetic resonance spectroscopy (MRS) and its application in medical diagnostics. It covers methodological aspects, metabolite analysis, and clinical case studies demonstrating MRS's role in disease characterization. The text highlights the impact of MRS on improving diagnostic precision beyond conventional MRI.

8. High-Field Magnetic Resonance Imaging: Technology and Medical Applications Focusing on high-field MRI systems (3T and above), this book discusses the technological challenges and clinical advantages of high-field imaging. It reviews enhanced image resolution, faster acquisition times, and expanded diagnostic capabilities. The impact of high-field MRI on patient care and

research innovation is a central theme.

9. Magnetic Resonance Imaging in Oncology: Impact and Innovations
This specialized book examines the application of MRI in cancer diagnosis,
staging, and treatment monitoring. It highlights the impact of MRI on
improving oncological outcomes through precise tumor characterization and
therapy response assessment. Advances in MRI techniques specific to oncology
are explored, emphasizing their clinical significance.

Impact Factor Magnetic Resonance In Medicine

Find other PDF articles:

 $\underline{https://staging.massdevelopment.com/archive-library-308/Book?docid=ewa76-2426\&title=french-2-final-exam.pdf}$

impact factor magnetic resonance in medicine: Regularized Image Reconstruction in Parallel MRI with MATLAB Joseph Suresh Paul, Raji Susan Mathew, 2019-11-05 Regularization becomes an integral part of the reconstruction process in accelerated parallel magnetic resonance imaging (pMRI) due to the need for utilizing the most discriminative information in the form of parsimonious models to generate high quality images with reduced noise and artifacts. Apart from providing a detailed overview and implementation details of various pMRI reconstruction methods, Regularized image reconstruction in parallel MRI with MATLAB examples interprets regularized image reconstruction in pMRI as a means to effectively control the balance between two specific types of error signals to either improve the accuracy in estimation of missing samples, or speed up the estimation process. The first type corresponds to the modeling error between acquired and their estimated values. The second type arises due to the perturbation of k-space values in autocalibration methods or sparse approximation in the compressed sensing based reconstruction model. Features: Provides details for optimizing regularization parameters in each type of reconstruction. Presents comparison of regularization approaches for each type of pMRI reconstruction. Includes discussion of case studies using clinically acquired data. MATLAB codes are provided for each reconstruction type. Contains method-wise description of adapting regularization to optimize speed and accuracy. This book serves as a reference material for researchers and students involved in development of pMRI reconstruction methods. Industry practitioners concerned with how to apply regularization in pMRI reconstruction will find this book most useful.

impact factor magnetic resonance in medicine: The Challenges of MRI Helene Ratiney, Olivier Beuf, 2024-04-15 After a review of the essential concepts of magnetic resonance imaging (MRI), The Challenges of MRI presents the recent techniques and methods of MRI and resulting medical applications. These techniques provide access to information that goes well beyond anatomy, with functional, hemodynamic, structural, biomechanical and biochemical information. MRI allows us to probe living organisms in a multitude of ways, guaranteeing the potential for continuous development involving several disciplines: physics, electronics, life sciences, signal processing and medicine. This collective work is made up of chapters written and designed by experts from the French community. They have endeavored to describe the techniques by recalling the underlying physics and detailing the modeling, methods and strategies for acquiring or extracting information. This book is aimed at master's students and PhD students, as well as lecturers and researchers in medical imaging and radiology.

impact factor magnetic resonance in medicine: The ^AOxford Handbook of Functional Brain Imaging in Neuropsychology and Cognitive Neurosciences Andrew C. Papanicolaou, 2017-04-27 A large part of the contemporary cognitive neuroscience literature involves functional neuroimaging, yet few readers are sufficiently familiar with it to appraise that literature correctly. The purpose of this Handbook is to enable them to understand the neuroimaging methods and evaluate their present contributions and future promise in the fields of cognitive neuroscience and neuropsychology. The chapters contain very accessible descriptions of the various methods and an objective account of their clinical and research applications.

impact factor magnetic resonance in medicine: Lanthanoid Series Elements: Advances in Research and Application: 2011 Edition , 2012-01-09 Lanthanoid Series Elements: Advances in Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Lanthanoid Series Elements. The editors have built Lanthanoid Series Elements: Advances in Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Lanthanoid Series Elements in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Lanthanoid Series Elements: Advances in Research and Application: 2011 Edition has been produced by the world's leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

impact factor magnetic resonance in medicine: Clinical PET/MRI Onofrio Antonio Catalano, 2022-09-07 Clinical PET/MR presents the state-of-the-art of PET/MR, guiding the reader from how to scan patients, how to read and report the studies, and how keep an eye on what is clinically relevant for a patient's care. Each chapter starts with the clinical scenario and then moves to pertinent imaging, addressing the need of a clinical PET/MR book written by world experts in both clinical and imaging fields. It discusses the clinical application of PET/MR in diverse subspecialties such as head and neck, neurology, cardiovascular, pediatrics, chest, bone, hematology, breast, hepatobiliary pancreatic, genitourinary, gynecology, and gastrointestinal tract. This book is a valuable resource for radiologists, oncologists and members of the biomedical field who need to learn more about clinical applications of PET/MR. - Presents a description of robust acquisition protocols to teach readers how to scan PET/MR patients, from tracers to sequences - Provides a clinical background section in each chapter to help readers focus on the real clinical issues that need to be addressed in the medical report - Written by world authorities in the field in a didactic manner to describe the real status of imaging

impact factor magnetic resonance in medicine: *Electromagnetic Fields in Biology and Medicine* Marko S. Markov, 2015-03-02 Through a biophysical approach, Electromagnetic Fields in Biology and Medicine provides state-of-the-art knowledge on both the biological and therapeutic effects of Electromagnetic Fields (EMFs). The reader is guided through explanations of general problems related to the benefits and hazards of EMFs, step-by-step engineering processes, and basic r

impact factor magnetic resonance in medicine: *Medical Advancements in Aging and Regenerative Technologies: Clinical Tools and Applications* Daskalaki, Andriani, 2012-11-30 This book translates basic science discoveries into regenerative therapies with the application of clinical tool in aging and tissue regeneration--

impact factor magnetic resonance in medicine: Magnetic Resonance Imaging of the Brain and Spine Scott W. Atlas, 2009 Established as the leading textbook on imaging diagnosis of brain and spine disorders, Magnetic Resonance Imaging of the Brain and Spine is now in its Fourth Edition. This thoroughly updated two-volume reference delivers cutting-edge information on nearly every aspect of clinical neuroradiology. Expert neuroradiologists, innovative renowned MRI physicists, and experienced leading clinical neurospecialists from all over the world show how to

generate state-of-the-art images and define diagnoses from crucial clinical/pathologic MR imaging correlations for neurologic, neurosurgical, and psychiatric diseases spanning fetal CNS anomalies to disorders of the aging brain. Highlights of this edition include over 6,800 images of remarkable quality, more color images, and new information using advanced techniques, including perfusion and diffusion MRI and functional MRI. A companion Website will offer the fully searchable text and an image bank.

impact factor magnetic resonance in medicine: World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada David A. Jaffray, 2015-07-13 This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.

impact factor magnetic resonance in medicine: Comprehensive Biomedical Physics, 2014-07-25 Comprehensive Biomedical Physics, Ten Volume Set is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics. This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics. The most comprehensive work on biomedical physics ever published Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine Contains 1800 illustrations, all in full color

impact factor magnetic resonance in medicine: <u>Heart Mechanics</u> El-Sayed H. Ibrahim, 2017-09-19 Based on research and clinical trials, this book details the latest research in magnetic resonance imaging (MRI) tagging technology related to heart mechanics. It covers clinical applications and examines future trends, providing a guide for future uses of MRI technology for studying heart mechanics.

impact factor magnetic resonance in medicine: Textbook of Post-ICU Medicine: The Legacy of Critical Care Robert D. Stevens, Nicholas Hart, Margaret S. Herridge, 2014-05-29 Surviving critical illness is not always the happy ending we imagine for patients. Many ICU survivors suffer from a range of long-lasting physical and psychological issues such end stage renal disease, congestive heart failure, cognitive impairment, neuromuscular weakness, and depression or anxiety, which affect their overall quality of life and ability to lead productive lives. This lingering burden or 'legacy' of critical illness is now recognized as a major public health issue, with major efforts underway to understand how it can be prevented, mitigated, or treated. The Textbook of Post-ICU Medicine: The Legacy of Critical Care discusses the science of the recovery process and the innovative treatment regimens which are helping ICU survivors regain function as they heal following trauma or disease. Describing the major clinical syndromes affecting ICU survivors, the book delineates established or postulated biological mechanisms of the post-acute recovery process, and discusses strategies for treatment and rehabilitation to promote recovery in the ICU and in the long term. The chapters are written by an interdisciplinary panel of leading clinicians and

researchers working in the field. The book serves as a unique reference for general practitioners, internists and nurses caring for long term ICU survivors as well as specialists in intensive care medicine, neurology, psychiatry, and rehabilitation medicine.

impact factor magnetic resonance in medicine: *Predictive Intelligence in Medicine* Islem Rekik, Ehsan Adeli, Sang Hyun Park, Celia Cintas, 2024-10-17 This volume constitutes the refereed proceedings of the 7th International Workshop on Predictive Intelligence in Medicine, PRIME 2024, held in conjunction with the 27th International conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco in October 2024. The 17 full papers presented here were carefully reviewed and selected from 22 submissions. These papers focus on the current, cutting-edge Predictive models and methods with applications in the field of Medical data analysis, for early disease prediction and prevention.

impact factor magnetic resonance in medicine: Radiation Therapy Dosimetry Arash Darafsheh, 2021-03-08 This comprehensive book covers the everyday use and underlying principles of radiation dosimeters used in radiation oncology clinics. It provides an up-to-date reference spanning the full range of current modalities with emphasis on practical know-how. The main audience is medical physicists, radiation oncology physics residents, and medical physics graduate students. The reader gains the necessary tools for determining which detector is best for a given application. Dosimetry of cutting edge techniques from radiosurgery to MRI-guided systems to small fields and proton therapy are all addressed. Main topics include fundamentals of radiation dosimeters, brachytherapy and external beam radiation therapy dosimetry, and dosimetry of imaging modalities. Comprised of 30 chapters authored by leading experts in the medical physics community, the book: Covers the basic principles and practical use of radiation dosimeters in radiation oncology clinics across the full range of current modalities. Focuses on providing practical guidance for those using these detectors in the clinic. Explains which detector is more suitable for a particular application. Discusses the state of the art in radiotherapy approaches, from radiosurgery and MR-guided systems to advanced range verification techniques in proton therapy. Gives critical comparisons of dosimeters for photon, electron, and proton therapies.

impact factor magnetic resonance in medicine: Physical Medicine and Rehabilitation E-Book Randall L. Braddom, 2010-12-07 Physical Medicine and Rehabilitation presents today's best physiatry knowledge and techniques, ideal for the whole rehabilitation team. This trusted reference delivers the proven science and comprehensive guidance you need to offer every patient maximum pain relief and optimal return to function. In this new edition, Dr. Randall L. Braddom covers current developments in interventional injection procedures, the management of chronic pain, integrative medicine, recent changes in the focus of stroke and brain injury rehabilitation, and much more. Access the complete contents online along with 1000 self-assessment guestions at www.expertconsult.com. Gain a clear visual understanding of important concepts thanks to 1400 detailed illustrations—1000 in full color. Find and apply the information you need easily with each chapter carefully edited by Dr. Braddom and his associates for consistency, succinctness, and readability. Access the fully searchable text online at Expert Consult, as well as 1000 self-assessment questions. Master axial and peripheral joint injections through in-depth coverage of the indications for and limitations of these therapies. Make optimal use of ultrasound in diagnosis and treatment. Get a broader perspective on your field from a new chapter on PM&R in the international community.

impact factor magnetic resonance in medicine: Index Medicus, 2004 Vols. for 1963-include as pt. 2 of the Jan. issue: Medical subject headings.

impact factor magnetic resonance in medicine: *Magnetic Materials and Technologies for Medical Applications* Alexander Tishin, 2021-11-18 The study of electromagnetic fields in the treatment of various diseases is not a new one; however, we are still learning how magnetic fields impact the human body and its organs. Many novel magnetic materials and technologies could potentially transform medicine. Magnetic Materials and Technologies for Medical Applications explores these current and emerging technologies. Beginning with foundational knowledge on the

basics of magnetism, this book then details the approaches and methods used in the creation of novel magnetic materials and devices. This book also discusses current technologies and applications, as well as the commercial aspects of introducing new technologies to the field. This book serves as an excellent introduction for early career researchers or a reference to more experienced researchers who wish to stay abreast of current trends and developing technologies in the field. This book could also be used by clinicians working in medicine and companies interested in establishing new medical technologies. Each chapter provides novel tasks for future scientific and technology research studies. - Outlines the basics of magnetism for enhanced understanding of its applications in medicine - Covers novel magnetic devices as well as technologies still under development, including magnetic brain stimulation, biosensors, and nanoparticles for drug delivery - Explores commercial opportunities and obstacles to market entry for new magnetic materials and technologies for the medical field

impact factor magnetic resonance in medicine: Modern Magnetic Resonance Graham A. Webb, 2007-05-26 Modern Magnetic Resonance provides a unique and comprehensive resource on up-to-date uses and applications of magnetic resonance techniques in the sciences, including chemistry, biology, materials, food, medicine, pharmaceuticals and marine sciences. The widespread appeal of MMR methods for revealing information at the molecular and microscopic levels is noted and examples are provided from the chemical and other sciences. Until now, there has been no single publication that covers all the areas encompassed by Modern Magnetic Resonance, by bringing together the various techniques and their applications in many scientific areas, the internationally renowned Editors have created a resource of broad appeal to the scientific community. The book includes: - High resolution solid and liquid state NMR - Low resolution NMR - Solution State NMR - Magnetic Resonance Imaging - Electron Spin Resonance - Many applications taken from all of the chemical and related sciences

impact factor magnetic resonance in medicine: Multimodality Imaging in Cardiovascular Medicine Christopher M. Kramer, 2010-10-19 A Doody's Core Title 2012 New applications of echocardiography, nuclear magnetic resonance, cardiovascular magnetic resonance, and cardiac computed tomography are rapidly developing and it is imperative that trainees and practitioners alike remain up to date in the latest developments. It is becoming increasingly difficult to remain abreast of these advances in each individual modality and thus it is no longer practical to focus on one at a time. In addition, training guidelines are changing and multimodality training has become the norm. Multimodality Imaging in Cardiovascular Medicine presents a clear and in-depth review of the available technologies and evidence supporting their appropriate clinical applications. Hundreds of outstanding images are included to support and augment the discussions from the leading experts in each modality. For maximum clinical value, rather than organize the content by imaging modality, the book is organized by disease so that the reader can utilize the book in real-time problem solving and decision making in daily clinical practice. Features of Multimodality Imaging in Cardiovascular Medicine Include More than 350 multimodality imaging examples of cardiovascular pathophysiology Corresponding text places the images into context at the interface with patient care State-of-the-art chapters contributed by the leading imaging experts

impact factor magnetic resonance in medicine: National Library of Medicine Current Catalog National Library of Medicine (U.S.), 1991

Related to impact factor magnetic resonance in medicine

Environment[][][][][][][][]Nature Geoscience []Nature
csgo[rating[]rws[]kast[]][][][][][][][][][][][][][][][][][][
Impact
2025win11 win11:win7win7 win11 win11 win11
\mathbf{pc}
000000
DOD Nature synthesis
Nature Synthesis
0000000000" Genshin Impact " - 00 000001mpact0000000 0000000000301mpact0000000
00000 SCI 0J CR 000000 SCI 000000000000000000000000000000000000
effect, affect, impact ["[]"[][][] - [][] effect, affect, [] impact [][][][][][][][][][][][][][][][][][][]
effect (□□) □□□□□□□ ← which is an effect (□□) The new rules will effect (□□), which is an
Communications Earth & Environment
Environment
csgo[rating[]rws[]kast[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
00000000000000000000000000000000000000
2025
pc
0000000 000000000000000000000000000000

Related to impact factor magnetic resonance in medicine

Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease (The New England Journal of Medicine6y) In patients with stable angina, two strategies are often used to guide revascularization: one involves myocardial-perfusion cardiovascular magnetic resonance imaging (MRI), and the other involves

Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease (The New England Journal of Medicine6y) In patients with stable angina, two strategies are often used to guide revascularization: one involves myocardial-perfusion cardiovascular magnetic resonance imaging (MRI), and the other involves

Debra McGivney, PhD (Case Western Reserve University9mon) Magnetic Resonance Imaging Magnetic Resonance Fingerprinting Computational Inverse Problems Mathematical Modeling Dr. McGivney's research interests are in mathematical modeling of biomedical

Debra McGivney, PhD (Case Western Reserve University9mon) Magnetic Resonance Imaging Magnetic Resonance Fingerprinting Computational Inverse Problems Mathematical Modeling Dr. McGivney's research interests are in mathematical modeling of biomedical

NMR and MRI: Applications in Chemistry and Medicine (C&EN1y) Designated April 26, 2011,

at Stony Brook University in Stony Brook, New York, and April 8, 2011, at Agilent Technologies in Santa Clara, California. MRI (magnetic resonance imaging) has become a **NMR and MRI: Applications in Chemistry and Medicine** (C&EN1y) Designated April 26, 2011, at Stony Brook University in Stony Brook, New York, and April 8, 2011, at Agilent Technologies in Santa Clara, California. MRI (magnetic resonance imaging) has become a

Back to Home: https://staging.massdevelopment.com